Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in Microbial Fuel Cell.

نویسندگان

  • E Elakkiya
  • Manickam Matheswaran
چکیده

Energy generation from dairy industry wastewater was investigated using a dual chambered Microbial Fuel Cell by aerobic and anaerobic anodic metabolism, operating with initial COD concentration of 1600 mg/L and anolyte pH of 7 produced highest power density of 192, 161 mW/m(2) and volumetric power of 3.2, 2.7 W/m(3) with COD removal efficiency of 91% and 90%, respectively. The columbic efficiency was 3.7-folds lower for aerobic metabolism compared to anaerobic metabolism with 17.17%. Effect of operating parameters such as anolyte pH and COD concentration on MFC performance was also evaluated. Anaerobic metabolism operated with COD concentration of 1600 mg/L and anolyte pH 7 showed best performances. Biofilm formation by inherent microbes of wastewater on anode was visualized by instrumental techniques. Milk processing operation runs almost through the year, hence MFC utilizing dairy industry wastewater would be a sustainable and reliable source of bio-energy generation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

Pollution reduction and electricity production from dairy industry wastewater with microbial fuel cell

Taguchi L9 orthogonal array was implemented to select optimum values of process parameters and to attain the maximum removal of pollutants and power generation from dairy industry wastewater using double chambered salt bridge microbial fuel cell. The maximum chemical oxygen demand reduction, current, voltage, power, current density and power density in double chambered salt bridge microbial fue...

متن کامل

Treatment of Brewery Wastewater and Production of Electricity through Microbial Fuel Cell Technology

Renewable energy is an increasing need in our society. Microbial fuel cells (MFCs) represent a new method for treating wastewater and simultaneously producing electricity. In the present study, we demonstrated the feasibility of bioelectricity generation from brewery wastewater treatment using a mediator less MFC at different pH. We also demonstrated that addition of readily utilizable substrat...

متن کامل

Sulfurous Analysis of Bioelectricity Generation from Sulfate-reducing Bacteria (SRB) in a Microbial Fuel Cell

The current importance of energy emphasizes the use of renewable resources (such as wastewater) for electricity generation by microbial fuel cell (MFC). In the present study, the native sulfate-reducing bacterial strain (R.gh 3) was employed simultaneously for sulfurous component removal and bioelectricity generation. In order to enhance the electrical conductivity and provision of a compatible...

متن کامل

Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte

Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2013